.
1월

밑바닥부터 시작하는 딥러닝 - seq2seq(1)

이번 글에서는 시계열 데이터를 다른 시계열 데이터로 변환하는 모델을 생각해볼 것이다. 이를 위한 기법으로, 2개의 RNN을 이용하는 seq2seq라는 기법을 살펴볼 것이다. seq2seq의 원리 seq2seq를 Encoder-Decoder 모델이라고도 한다. Encod...

.
1월

밑바닥부터 시작하는 딥러닝 - RNN을 사용한 문장 생성

지금까지 RNN과 LSTM의 구조와 구현을 살펴봤다. 이번 글에서는 언어 모델을 사용해 '문장 생성'을 수행해볼 것이다. 말뭉치를 사용해 학습한 언어 모델을 이용하여 새로운 문장을 만드는 것이다. 그런 다음 개선된 언어 모델을 이용하여 더 자연스러운 문장을 생성하는 것...

.
1월

밑바닥부터 시작하는 딥러닝 - 게이트가 추가된 RNN(4)

LSTM 계층 다층화 RNNLM으로 정확한 모델을 만들고자 한다면 많은 경우 LSTM 계층을 깊게 쌓아 효과를 볼 수 있다. LSTM을 2층, 3층 식으로 여러 겹 쌓으면 언어 모델의 정확도가 향상될 수 있다. LSTM을 2층으로 쌓아 RNNLM을 만든다고 하면 위의 ...

.
1월

밑바닥부터 시작하는 딥러닝 - 게이트가 추가된 RNN(3)

Time LSTM 구현 다음으로 Time LSTM 구현을 해볼 것이다. Time LSTM은 T개분의 시계열 데이터를 한꺼번에 처리하는 계층이다. 전체 그림은 아래 그림과 같다. RNN에서는 학습할 때 Truncated BPTT를 수행했다. Truncated BPTT는 ...

.
1월

밑바닥부터 시작하는 딥러닝 - 순환 신경망(RNN)(2)

Time RNN 계층 구현 Time RNN 계층은 T개의 RNN 계층으로 구성된다. Time RNN 계층은 아래 그림처럼 표현된다. 위에 그림에서 보면, Time RNN 계층은 RNN 계층 T개를 연결한 신경망이다. 이 신경망으로 Time RNN 클래스로 구현할 것이다...

.
1월

밑바닥부터 시작하는 딥러닝 - 순환 신경망(RNN)(1)

지금까지 살펴본 신경망은 피드포워드라는 유형의 신경망이다. 피드포워드란 흐름이 단방향인 신경망을 말한다. 즉 입력 신호가 다음 층(중간층)으로 전달되고, 그 신호를 받은 층은 그다음 층으로 전달하고, 또 다음 층으로 전달되는 한 방향으로만 신호가 전달된다. 피드포워드 ...