밑바닥부터 시작하는 딥러닝 - 신경망(3)
신경망의 학습 손실 함수 신경망 학습에는 학습이 얼마나 잘 되고 있는지를 알기 위한 '척도'가 필요하다. 일반적으로 학습 단계의 특정 시점에서 신경망의 성능을 나타내는 척도로 '손실'을 사용한다. 손실은 학습 데이터(학습 시 주어진 정답 데이터)와 신경망이 예측한 결과를 비교하여 예측이 얼마나 나쁜가를 산출한 단일 값(스칼라)이다. 신경망의 손실은 손실 함수를 사용해 구한다. 다중 클래스 분류 신경망에서는 손실 함수로 흔히 교차 엔트로피 오차를 이용한다. 교차 엔트로피 오차는 신경망이 출력하는 각 클래스의 '확률'과 '정답 레이블'을 이용해 구할 수 있다. 앞에서 구현한 신경망에 Softmax 계층과 Cross Entropy Error 계층을 새로 추가한다. x는 입력 데이터, t는 정답 레이블, L은 ..