밑바닥부터 시작하는 딥러닝 - 게이트가 추가된 RNN(3)
Time LSTM 구현 다음으로 Time LSTM 구현을 해볼 것이다. Time LSTM은 T개분의 시계열 데이터를 한꺼번에 처리하는 계층이다. 전체 그림은 아래 그림과 같다. RNN에서는 학습할 때 Truncated BPTT를 수행했다. Truncated BPTT는 역전파의 연결은 적당한 길이로 끊었지만, 순전파의 흐름은 그대로 유지한다. 위의 그림처럼 은닉 상태와 기억 셀을 인스턴스 변수로 유지할 것이다. 이렇게 하여 다음번에 forward()가 불렸을 때, 이전 시각의 은닉 상태에서부터 시작할 수 있다. Time LSTM 계층 구현을 코드로 알아보자. class TimeLSTM: def __init__(self, Wx, Wh, b, stateful = False): self.params = [Wx,..